学术报告

当前位置: 首页 -> 学术研究 -> 学术报告 -> 正文

On the maximal displacement of subcritical branching random walks with or without killing

日期:2025-08-21   阅读次数:

报告人:侯浩杰 博士后(北京理工大学)

时间:2025年08月28日 15:00-

地点:理科楼LA103


摘要:Consider a subcritical branching random walk $\{Z_k\}_{k\geq 0}$ with offspring distribution $\{p_k\}_{k\geq 0}$ and step size $X$.  Let $M_n$ denote the rightmost position reached by $\{Z_k\}_{k\geq 0}$ up to generation $n$  and define $M := \sup_{n\geq 0} M_n$. In this talk, we  give asymptotics of tail probability of  $M$ under optimal assumptions $\sum^{\infty}_{k=1}(k\log k)p_k<\infty$ and $\mathbb{E}[Xe^{\gamma X}]<\infty$, where $\gamma >0$ is a constant such that $\mathbb{E}[e^{\gamma X}]=\frac{1}{m}$ and  $m=\sum_{k=0}^\infty kp_k\in (0,1)$.  Moreover, we confirm the conjecture of Neuman and Zheng [Probab. Theory Related Fields, 2017] by establishing the existence of a critical value $m\mathbb{E}[X e^{\gamma X}]$ such that

   \begin{align}

      \lim_{n\to\infty} \mathbb{P}(M_n\geq cn\big| M\geq cn)=

      \begin{cases}

         &1,~c\in\big(0,m\mathbb{E}[Xe^{\gamma X}]\big); \\

         &0,~c\in\big(m\mathbb{E}[Xe^{\gamma X}], \infty\big).

      \end{cases}

   \end{align}

Finally, we extend these results to the maximal displacement of branching random walks with killing. Based on an ongoing joint work with Shuxiong Zhang (Anhui Normal University).


邀请人:数学研究中心


欢迎广大师生积极参与!


文本1 侯浩杰 博士后(北京理工大学) 文本2 2025年08月28日 15:00
文本3 理科楼LA103 文本4
文本5 文本6
文本7 文本8