学术报告

当前位置: 首页 -> 学术研究 -> 学术报告 -> 正文

The spectral eigenvalue set and Beurling dimension on self-similar measures

日期:2025-12-10   阅读次数:

报告人:陆正义 讲师(湖南大学)

时间:2025年12月16日 9:30-

腾讯会议:405-830-573


摘要: In this talk, we study harmonic analysis in self-similar measures. Let m be the self-similar measures associated to Hadamard triples. We prove that the integer set T, consisting of all integers t for which (q,D,tL) remains a Hadamard triple, contains all integers coprime to q and itself constitutes a spectral eigenvalue set for m. Moreover, for any prescribed Beurling dimension s between zero and the Hausdorff dimension of the measure’s support, we show that the corresponding spectra have the cardinality of the continuum. This presentation will focus on outlining the methods for constructing spectra.


邀请人:数学研究中心


欢迎广大师生积极参与!


文本1 陆正义 讲师(湖南大学) 文本2 2025年12月16日 9:30
文本3 腾讯会议:405-830-573 文本4
文本5 文本6
文本7 文本8